
CS 61A Discussion 2
Environment Diagrams /
Recursion

ANNOUNCEMENTS!!!

Extra environment diagram questions on the worksheet
linked from the course website (cs61a.org)!

Hopefully you’ve finished (or are almost finished with)
Hog by now… because it’s due tonight!

Online office hours are now a thing!

HW2 due next week! Party in 247 Cory next Monday
(6:30-8:30pm)!

http://cs61a.org/

MORE ANNOUNCEMENTS.

CSM signups on Piazza. Expanding sections will have
signups available starting today at 1pm.

Register for our CS 198 class if you’re interested in
furthering your knowledge about general
computer-scientific concepts.

Do not post code publicly on Piazza. Or anywhere, really.

ATTENDANCE

if disc == 116:
use(‘curvatureflow’)

else:
use(‘simplicialcomplex’)

1.
Quiz II / Env. Diagrams II

Let’s see how much you remember about
environment diagrams…!

Challenge Questions
for those who want a challenge

CHALLENGE QUESTION #1

Fill in the blanks (without using any numbers in the first
blank!) to get the expected output.

>>> (lambda x: lambda y: _______)(____)(lambda z: z * z)()
9

More environment diagrams

<see extra set of slides>

2.
Recursion

Defining functions in terms of themselves

“
“To understand recursion, one must
first understand recursion” - Darth

Vader

RECURSION

Recursion is where you call a
function from its own body.

def stack(overflow):
 return stack(overflow)

It’s technically recursion…
but what is wrong with the
function above?

Your base case
is the smallest or simplest case.

Tie the two together
by working toward the base case in your recursive calls.

Your recursive case
defines the problem in terms of a simpler problem.

Why does recursion work?
Let’s prove the correctness of one
example using induction...

show that the
base case works

assume that for
an arbitrary

valid input, the
function works

prove that for an input of
one unit greater size, the
function also works (i.e.
you’ve properly tied the
recursive calls together)

If we can prove the above, we’ve proved correctness for
all inputs. Thus, in practice we can take the “recursive
leap of faith” under security of these types of proofs.

TREE RECURSION

Tree recursion is where you
make more than one recursive
call in a single function call.

def fib(n):
 if n <= 1:
 return n
 return fib(n - 1) + \
 fib(n - 2)

(See how there are two
recursive calls in the body
above!)

The Fibonacci recursion tree. The blue dots depict the order in which the function calls return.

また来週！
Thanks, everyone...

